Università degli Studi di Urbino Carlo Bo / Portale Web di Ateneo


ANALISI MATEMATICA 1
MATHEMATICAL ANALYSIS 1

A.A. CFU
2024/2025 9
Docente Email Ricevimento studentesse e studenti
Raffaella Servadei Lunedì ore 14-16 oppure su appuntamento
Didattica in lingue straniere
Insegnamento con materiali opzionali in lingua straniera Inglese
La didattica è svolta interamente in lingua italiana. I materiali di studio e l'esame possono essere in lingua straniera.

Assegnato al Corso di Studio

Informatica – Scienza e Tecnologia (L-31)
Curriculum: PERCORSO COMUNE
Giorno Orario Aula
Giorno Orario Aula

Obiettivi Formativi

Lo scopo dell’insegnamento è quello di fornire tutti i concetti basilari dell'analisi matematica per funzioni di una variabile e le relative tecniche di calcolo.

Programma

01. Numeri:

01.01  Insiemi numerici: numeri naturali, numeri interi, numeri razionali e numeri reali.

01.02  Sommatorie, fattoriali, coefficienti binomiali e formula del binomio di Newton.

01.03  Proprietà algebriche e rappresentazione geometrica dei numeri razionali.

01.04  Dai numeri razionali ai numeri reali.

01.05  Valore assoluto e distanza sulla retta.

01.06  Intervalli sulla retta reale. Insiemi limitati e illimitati sulla retta reale. Massimo e minimo di un sottoinsieme della retta reale. Estremo inferiore e estremo superiore di un sottoinsieme della retta reale.

01.07  Il principio di induzione e applicazioni.

02.  Funzioni di una variabile:

02.01  Il concetto di funzione.

02.02  Funzioni reali di una variabile reale: generalità, funzioni limitate, funzioni simmetriche, funzioni monotone, funzioni periodiche.

02.03  Funzioni elementari.

02.04  Operazioni sui grafici.

02.05  Funzioni definite a tratti.

02.06  Funzioni composte.

02.07  Funzioni inverse.

02.08  Le funzioni trigonometriche inverse.

03. Limiti di funzioni:

03.01  Limiti finiti al finito.

03.02  Teorema di unicità del limite*.

03.03  Limiti finiti all’infinito.

03.04  Asintoti orizzontali.

03.05  Limiti infiniti all’infinito.

03.06  Asintoti obliqui. Limiti infiniti al finito.

03.07  Limite destro e sinistro.

03.08  Asintoti verticali.

03.09  Non esistenza del limite.

03.10  Algebra dei limiti e forme indeterminate.

03.11  Teorema di permanenza del segno*.

03.12  Teorema di compressione (o dei carabinieri)*.

03.13  Teorema di cambio di variabile nel limite.

03.14  Definizione di funzioni asintoticamente equivalenti.

03.15  Limiti notevoli. 

03.16  Gerarchia degli infiniti.

04. Successioni:

04.01  Definizione di successione.

04.02  Successioni convergenti, divergenti e irregolari.

04.03  Successioni monotone.

05. Continuità:

05.01  Funzioni continue.

05.02  Algebra delle funzioni continue.

05.03  Continuità delle funzioni elementari.

05.04  Continuità della funzione composta.

05.05  Limiti di polinomi.

05.06  Limiti di funzioni razionali.

05.07  Limiti notevoli.

05.08  Punti di discontinuità eliminabili e a salto.

05.09  Funzioni continue su un intervallo: Teorema degli zeri*, Teorema di Weierstrass e Teorema dei valori intermedi*.

05.10  Continuità della funzione inversa.

06. Calcolo differenziale per funzioni di una variabile:

06.01  Derivata di una funzione.

06.02  Significato geometrico della derivata.

06.03  Equazione della retta tangente al grafico di una funzione.

06.04  Derivate di funzioni elementari.

06.05  Legame tra continuità e derivabilità di una funzione*.

06.06  Algebra delle derivate*.

06.07  Derivata del prodotto e del quoziente di funzioni*.

06.08  Derivata della funzione composta*.

06.09  Derivata della funzione inversa*.

06.10  Derivata destra e sinistra e punti di non derivabilità.

06.11  Punti stazionari, massimi e minimi locali e globali.

06.12  Teorema di  Fermat*.

06.13  Teorema di Lagrange* e applicazioni: test di monotonia e caratterizzazione delle funzioni a derivata nulla su un intervallo.

06.14  Ricerca di massimi e minimi di funzioni.

06.15  Teorema di de L’Hospital.

06.16  Derivata seconda.

06.17  Concavità e convessità di una funzione.

06.18  Punti di flesso.

06.19  Studio del grafico di una funzione.

07. Calcolo integrale per funzioni di una variabile:

07.01  Primitive e integrale indefinito di una funzione.

07.02  Primitive di funzioni elementari.

07.03  Area di una regione piana.

07.04  Definizione di integrale definito.

07.05  Classi di funzioni integrabili.

07.06  Proprietà dell’integrale definito.

07.07  Il Teorema della media*.

07.08  Il Teorema fondamentale del Calcolo Integrale*.

07.09  Primi metodi di integrazione: scomposizione e sostituzione.

07.10  Integrazione di funzioni razionali.

07.11  Integrazione per parti*.

07.12  Integrazione di funzioni trigonometriche.

07.13  Integrazione di funzioni irrazionali.

07.14  Integrazione di funzioni non limitate e integrazione su intervalli illimitati.

07.15  Criteri di integrabilità: confronto e confronto asintotico*.

08. Numeri complessi:

08.01  Forma algebrica e operazioni con i numeri complessi.

08.02  Piano complesso.

08.03  Coniugato e modulo di un numero complesso.

08.04  Forma trigonometrica e Formula di De Moivre.

08.05  Radici n-esime di un numero complesso.

08.06  Forma esponenziale complessa e formule di Eulero.

08.07  Soluzioni complesse di equazioni algebriche.

08.08   Il Teorema fondamentale dell’algebra.

09. Serie numeriche:

09.01  Definizione e primi esempi: serie geometrica, serie armonica, serie armonica generalizzata.

09.02  Condizione necessaria alla convergenza*.

09.03  Serie a termini positivi: criteri del confronto* e del confronto asintotico*, criteri della radice e del rapporto.

09.04  Confronto tra serie numeriche e integrali impropri. 

09.05  Serie a termini di segno variabile: convergenza assoluta.

09.06  Serie a segni alterni.

09.07  Criterio di Leibniz.

09.08  Serie numeriche dipendenti da un parametro.

10. Approssimazione di funzioni e Formula di Taylor:

10.01  Differenziale e approssimazione lineare.

10.02  Il simbolo di “o piccolo”.

10.03  Sviluppi asintotici e applicazione al calcolo di limiti.

10.04  Polinomio di Taylor.

10.05  Formula di Taylor con il resto di Peano*.

10.06  Formula di Taylor per funzioni elementari.

10.07  Formula di Taylor con il resto di Lagrange e con il resto integrale.

10.08  Applicazioni: approssimazione di funzioni, stima dell’errore e calcolo di limiti.

10.09  Serie di Taylor e sviluppi in serie di Taylor di funzioni elementari.

* : tutti gli argomenti con l’asterisco sono da intendersi con relativa dimostrazione.

Eventuali Propedeuticità

Non vi sono propedeuticità obbligatorie. Si consiglia di sostenere l’esame di Analisi Matematica 1 durante il primo anno di corso e dopo Logica, Algebra e Geometria.

Risultati di Apprendimento (Descrittori di Dublino)

Conoscenza e comprensione (knowledge and understanding):

Lo studente acquisirà le conoscenza fondamentali di analisi matematica per lo studio di funzioni di una variabile.

Capacità di applicare conoscenze e comprensione (applying knowledge and understanding):

Lo studente acquisirà le metodologie proprie dell’analisi matematica e sarà in grado di applicarle allo studio di problemi di vario genere.

Autonomia di giudizio (making judgements):

Lo studente sarà in grado di applicare i metodi dell’analisi matematica al fine di risolvere nuovi problemi, anche di natura applicativa.

Abilità comunicative (communications skills):

Lo studente acquisirà la capacità di esprimere i concetti fondamentali dell’analisi matematica con un certo rigore.

 

Capacità di apprendimento (learning skills):

Lo studente acquisirà la capacità di studiare e apprendere le nozioni di analisi matematica, anche al fine di utilizzarle per la risoluzione di problemi di natura applicativa.

Materiale Didattico

Il materiale didattico predisposto dalla/dal docente in aggiunta ai testi consigliati (come ad esempio diapositive, dispense, esercizi, bibliografia) e le comunicazioni della/del docente specifiche per l'insegnamento sono reperibili all'interno della piattaforma Moodle › blended.uniurb.it

Modalità Didattiche, Obblighi, Testi di Studio e Modalità di Accertamento

Modalità didattiche

Lezioni teoriche ed esercitazioni.

Obblighi

Sebbene fortemente consigliata, la frequenza non è obbligatoria.

Testi di studio

Adams, Calcolo Differenziale 1, Casa Editrice Ambrosiana

Adams - Essex, Calculus: a complete course, Pearson Canada

Bertsch - Dall’Aglio - Giacomelli, Epsilon 1, Mc Graw Hill

Bramanti - Pagani - Salsa, Analisi matematica 1, Zanichelli

Bramanti - Pagani - Salsa, Analisi matematica 1 con elementi di geometria e algebra lineare, Zanichelli

Conti - Ferrario - Terracini - Verzini, Analisi matematica, Vol.1, Apogeo

Salsa - Squellati, Esercizi di Analisi matematica 1, Zanichelli

Modalità di
accertamento

Se previsto dal calendario accademico, nel periodo di sospensione delle attività didattiche del semestre in cui si tiene l'insegnamento viene svolta una prova scritta intermedia, a cui può partecipare solo chi è al primo anno. Tale prova, della durata di trenta minuti, consiste in sei domande a risposta multipla e si considera superata rispondendo correttamente ad almeno cinque esercizi, nel qual caso si ottiene 1/30 in più sul voto finale dell’esame di Analisi Matematica 1. Tale maggiorazione è valida solo per gli appelli della prima sessione d'esame successiva al semestre in cui si svolge la prova intermedia.

L’esame di Analisi Matematica 1 consiste in un esame scritto e uno orale, entrambi obbligatori.

La prova scritta, della durata di due ore, consiste in esercizi a risposta aperta sugli argomenti del programma dell’insegnamento. La prova scritta si considera superata se il voto riportato è maggiore o uguale a 15/30. Durante lo svolgimento delle prove scritte non è consentita la consultazione di libri di testo, né di appunti di alcun tipo, né di libri di esercizi. Non è consentito l’utilizzo di calcolatrici scientifiche, né di telefoni cellulari, pena l’esclusione.

La prova orale consiste in un colloquio sugli argomenti del programma dell’insegnamento. Può sostenere la prova orale solo chi abbia superato la prova scritta con un voto minimo di 15/30. Il superamento della prova scritta dà diritto a sostenere l’esame orale solo nell’appello nel quale è stato superato l’esame scritto o negli appelli della medesima sessione.

Il voto finale dell’esame di Analisi Matematica 1 è dato dalla media tra il voto della prova scritta e quello della prova orale.

Disabilità e DSA

Le studentesse e gli studenti che hanno registrato la certificazione di disabilità o la certificazione di DSA presso l'Ufficio Inclusione e diritto allo studio, possono chiedere di utilizzare le mappe concettuali (per parole chiave) durante la prova di esame.

A tal fine, è necessario inviare le mappe, due settimane prima dell’appello di esame, alla o al docente del corso, che ne verificherà la coerenza con le indicazioni delle linee guida di ateneo e potrà chiederne la modifica.

Informazioni aggiuntive per studentesse e studenti non Frequentanti

Modalità didattiche

Come per frequentanti.

Obblighi

Come per frequentanti.

Testi di studio

Come per frequentanti.

Modalità di
accertamento

Come per frequentanti.

Disabilità e DSA

Le studentesse e gli studenti che hanno registrato la certificazione di disabilità o la certificazione di DSA presso l'Ufficio Inclusione e diritto allo studio, possono chiedere di utilizzare le mappe concettuali (per parole chiave) durante la prova di esame.

A tal fine, è necessario inviare le mappe, due settimane prima dell’appello di esame, alla o al docente del corso, che ne verificherà la coerenza con le indicazioni delle linee guida di ateneo e potrà chiederne la modifica.

« torna indietro Ultimo aggiornamento: 26/07/2024


Il tuo feedback è importante

Raccontaci la tua esperienza e aiutaci a migliorare questa pagina.

Posta elettronica certificata

amministrazione@uniurb.legalmail.it

Social

Università degli Studi di Urbino Carlo Bo
Via Aurelio Saffi, 2 – 61029 Urbino PU – IT
Partita IVA 00448830414 – Codice Fiscale 82002850418
2025 © Tutti i diritti sono riservati

Top