Università degli Studi di Urbino Carlo Bo / Portale Web di Ateneo


PROBABILITà E STATISTICA MATEMATICA

A.A. CFU
2008/2009 6
Docente Email Ricevimento studenti
Renzo Lupini lunedì/martedì 11:00-12:00

Assegnato al Corso di Studio

Giorno Orario Aula

Obiettivi Formativi

Scopo del Corso è di fornire le nozioni di base del calcolo delle probabilità, con particolare riferimento a teoria della probabilità, variabili aleatorie e funzioni di probabilità, nonché i principali concetti della statistica inferenziale, con particolare riferimento a teoria della stima, test di ipotesi e regressione lineare.

Programma

01. Variabili aleatorie discrete univariate:
01.01 Generalità sui fenomeni aleatori. Serie di osservazioni di grandezze in sistemi fisici, economici e biologici. Frequenze empiriche di occorrenza e legge dei grandi numeri.
01.02 Distribuzione di probabilità (d.d.p.) e funzione di ripartizione (f.d.r).
01.03 D.d.p. di Bernoulli e di Poisson.
01.04 Eventi e loro probabilità. Probabilità condizionate. Indipendenza e incompatibilità.

02. Variabili aleatorie continue univariate:
02.01 Funzione densità di probabilità (f.d.p.) e funzione di ripartizione (f.d.r.).
02.02 F.d.p. Normale (Gaussiana), di Bernoulli (Bernoulliana), Gamma e Chi-quadro.
02.03 Funzioni di variabili aleatorie e loro f.d.p.: modulo, quadrato e radice.

03. Analisi di variabili aleatorie univariate:
03.01 Dispersione minima rispetto a un punto, semplice e quadratica: mediana, media e varianza.
03.02 Teorema di Tchebyshev.
03.03 Media e varianza di Bernoulliane, Gaussiane, Gamma e Chi-quadro.
03.04 Momenti di ordine superiore: skewness e kurtosi.
03.05 Funzione generatrice dei momenti e funzione caratteristica.

04. Variabili aleatorie bivariate:
04.01 F.d.p. congiunte e marginali e f.d.r. di variabili aleatorie bivariate.
04.02 D.d.p. bivariata di Bernoulli e f.d.p. bivariata Normale.
04.03 Eventi e loro probabilità. Probabilità condizionali e variabili aleatorie indipendenti.
04.04 Funzioni scalari di variabili aleatorie bivariate. Somma di variabili aleatorie indipendenti.
04.05 Centro e matrice di varianza-covarianza. Retta ai minimi quadrati.
04.06 Funzioni lineari e quadratiche di variabili aleatorie bivariate e loro f.d.p.
04.07 Funzioni caratteristiche.

05. Variabili aleatorie multivariate:
05.01 F.d.p. di variabili aleatorie n-variate. Centro e matrice nxn di varianza-covarianza. Iperpiani ai minimi quadrati.
05.02 Funzioni caratteristiche. F.d.p. di somme di variabili aleatorie indipendenti.
05.03 Bernoulliane e Gaussiane n-dimensionali.
05.04 F.d.p. di variabili aleatorie univariate associate a sistemi di variabili aleatorie Normali indipendenti: Chi-quadro, T di Student, F di Fisher a n gradi di libertà.

06. Successioni di variabili aleatorie:
06.01 Convergenza in probabilità.
06.02 Successioni di ripetizioni indipendenti di una variabile aleatoria univariata. Convergenza in probabilità delle medie algebriche. Legge dei grandi numeri e teorema del limite centrale.

07. Elementi di statistica:
07.01 Popolazione e campioni.
07.02 Funzioni campionarie per campioni indipendenti e loro f.d.p.
07.03 Stimatori della media e della varianza. Efficienza e distorsione.
07.04 Stime per intervalli.
07.05 Test di ipotesi: test di normalità, test di omogeneità e di indipendenza.
07.06 Test chi-quadro.

Eventuali Propedeuticità

Analisi Matematica

Risultati di Apprendimento (Descrittori di Dublino)

Modalità Didattiche, Obblighi, Testi di Studio e Modalità di Accertamento

Modalità didattiche

Lezioni frontali.

Obblighi

Nessuno.

Testi di studio

Lupini, "Lezioni di Probabilità e Statistica", Quattroventi, 2007.

Baldi, "Calcolo delle Probabilità e Statistica", McGraw-Hill, 1998.

Modalità di
accertamento

Prova scritta e prova orale.

Note

Il corso è erogato sia nel "percorso in presenza" che nel "percorso online" del Corso di Laurea di Informatica Applicata.

« torna indietro Ultimo aggiornamento: 14/07/2008


Condividi


Questo contenuto ha risposto alla tua domanda?


Il tuo feedback è importante

Raccontaci la tua esperienza e aiutaci a migliorare questa pagina.

Se sei vittima di violenza o stalking chiama il 1522

Il 1522 è un servizio pubblico promosso dalla Presidenza del Consiglio dei Ministri – Dipartimento per le Pari Opportunità. Il numero, gratuito è attivo 24 h su 24, accoglie con operatrici specializzate le richieste di aiuto e sostegno delle vittime di violenza e stalking.

Posta elettronica certificata

amministrazione@uniurb.legalmail.it

Social

Performance della pagina

Università degli Studi di Urbino Carlo Bo
Via Aurelio Saffi, 2 – 61029 Urbino PU – IT
Partita IVA 00448830414 – Codice Fiscale 82002850418
2021 © Tutti i diritti sono riservati

Top