PHYSICS II
FISICA II
Physics II
Fisica II
A.Y. | Credits |
---|---|
2012/2013 | 6 |
Lecturer | Office hours for students | |
---|---|---|
Catia Grimani | Tuesday, 15:00-17:00 |
Assigned to the Degree Course
Date | Time | Classroom / Location |
---|
Learning Objectives
The aim of this course is to provide insights on classical physical phenomena with respect, in particular, to electricity and magnetism. Static and time-dependent fields will be considered.
Program
01. Electric Interaction
01.01 The electric charge.
01.02 Coulomb's law.
01.03 Conductors, insulators and semiconductors.
01.04 Conservation and quantization of electric charge.
01.05 The concept of field.
01.06 The linear principle of superposition.
01.07 The electric field.
01.08 Electric field associated with charge distributions.
01.09 Motion of an electric charge in a uniform electric field.
01.10 Electric potential energy and potential.
01.11 Electric potential energy and electric potential associated with charge distributions.
01.12 Equipotential surfaces.
01.13 Electric field of the electric dipole.
01.14 Electric dipole in an electric field.
01.15 Flux of a vector field.
01.16 Gauss's law for the electric field.
01.17 Gauss's law and Coulomb's law.
01.18 Applications of the Gaussís law.
01.19 Electric capacitance - Capacitors.
01.20 Combination of capacitors.
01.21 Energy of the electric field.
01.22 Electric current.
01.23 Ohm's law.
01.24 Current density.
01.25 Joule effect in a conductor and resistors.
01.26 Combination of resistors.
01.27 Electromotive force.
01.28 Kirchhoff's circuit laws.
01.29 RC circuits.
02. Magnetic Interaction
02.01 Magnetic field in vacuum.
02.02 Magnetic force on a moving charge and Lorentzís force.
02.03 Motion of an electric charge in a magnetic field.
02.04 Hall effect.
02.05 Magnetic force on a current-carrying wire.
02.06 Magnetic torque on a current-carrying coil.
02.07 Magnetic field generated by a closed current.
02.08 Magnetic field of a rectilinear current.
02.09 Ampere's law.
02.10 Solenoid.
02.11 Gauss's law for the magnetic field.
03. Time dependent electromagnetic fields
03.01 Electromagnetic induction and Faraday-Henry law.
03.02 Lenz's law.
03.03 Parasitic currents.
03.04 Self induction.
03.05 Inductors.
03.06 RL circuits.
03.07 Energy of the magnetic field.
03.08 Free, damped and forced electrical oscillations: RLC series circuit.
03.09 The Ampère-Maxwell law.
03.10 Maxwell's equations.
03.11 Electromagnetic waves and light speed.
03.12 Plane polarized electromagnetic waves.
03.13 Energy of an electromagnetic wave and Poynting vector.
03.14 Energy associated with electromagnetic waves of different wavelength.
03.15 The spectrum of electromagnetic radiation.
Bridging Courses
Physics I.
Teaching, Attendance, Course Books and Assessment
- Teaching
Theory lectures and laboratory exercises, both face-to-face and on-line.
- Attendance
Although recommended, course attendance is not mandatory.
- Course books
Recommended books for theory and exercises:
- Mazzoldi, Nigro, Voci, "Elementi di Fisica, Vol. 2 - Elettromagnetismo e Onde", EdiSES, 2008 [URL]
- Halliday, Resnick, Krane, "Fisica 2", Casa Editrice Ambrosiana, 2004 [URL].
Recommended books for in depth-study exercises:
- Bruno, D'Agostino, Santoro, "Esercizi di Fisica - Elettromagnetismo", Casa Editrice Ambrosiana, 2004 [URL]
- Pavan, Sartori, "Problemi di Fisica 2 Risolti e Commentati", Casa Editrice Ambrosiana, 2006 [URL].
- Assessment
Written and oral exam.
- Disability and Specific Learning Disorders (SLD)
Students who have registered their disability certification or SLD certification with the Inclusion and Right to Study Office can request to use conceptual maps (for keywords) during exams.
To this end, it is necessary to send the maps, two weeks before the exam date, to the course instructor, who will verify their compliance with the university guidelines and may request modifications.
Notes
The course is offered both face-to-face and on-line within the Laurea Degree Program in Applied Computer Science.
« back | Last update: 22/01/2013 |