Università degli Studi di Urbino Carlo Bo / Portale Web di Ateneo


ORGANIC CHEMISTRY II
CHIMICA ORGANICA II

A.Y. Credits
2023/2024 10
Lecturer Email Office hours for students
Giovanni Piersanti Any time but with an email.
Teaching in foreign languages
Course with optional materials in a foreign language English
This course is entirely taught in Italian. Study materials can be provided in the foreign language and the final exam can be taken in the foreign language.

Assigned to the Degree Course

Pharmaceutical Chemistry and Technology (LM-13)
Curriculum: PERCORSO COMUNE
Date Time Classroom / Location
Date Time Classroom / Location

Learning Objectives

This course focuses on organic reactions, reaction mechanisms, and the strategic applications of reactions in organic synthesis.Topics include stereochemistry, stereoselectivity, oxidations and reductions, olefinations, cuprateconjugate additions, transition-metal catalyzed cross couplingsand related reactions, cycloadditions, electrocyclizations, sigmatropic rearrangements, enolate chemistry, aldol additions and related reactions, as well as organocatalysis. The material will be illustrated by numerous applications in multistep chemical synthesis, many of which are drawn from the research. Based on this course, students should be able to read the modern literature, develop independent research proposals in organic chemistry, and succeed in graduate school as well as in industrial setting.

This course is intended for any chemist who requires knowledge of the most recent methods in organic synthesis. The course materials also cover the strategies by which syntheses of organic compounds are designed and are continuously updated from the current literature right up to the time of each presentation of the course. The vast majority of the materials are from the 1970′s supplemented with some older references provided for the purpose of placing the most modern methods in a proper historical perspective.

Program

1. Heterocycles (1 week)
Nomenclature of heterocyclic compounds. Pyrrole, Furan, Thiophene, Indole, Benzofuran and Benzotiophene, physicochemical properties, synthesis and reactivity. Pyridine, Quinoline and Isoquinoline: physico-chemical properties, synthesis and reactivity. Diazynes: Pirimidine, Pirazine, Piridazine. physico-chemical properties, synthesis and reactivity.
2. Biological Chemistry (1 Week)
Lipids, Carbohydrates, Amino Acids, Peptides and Proteins, Nucleic Acids.
3. Chirality and Sterechemistry (1 week)
Short overview of basic concepts (Organic Chemistry I) - Enantiomers, Diastereomers, Epimers Meso Compounds and Prochirality. Atropoisomers -
Prochirality - Stereospecific and stereoselective reactions.
4. Modern Organic Reactions (8 weeks)
Oxidation, Reduction, Redox Neutral reactions, Cerbenes and Nitrenes, Advanced functional group tranformations, Peryciclic reactions, Organometallics, Protecting groups
5. Synthesis and Key Concepts in Stereoselective Synthesis (1 weeks)

Bridging Courses

Successfully passed the general chemistry exam.

Learning Achievements (Dublin Descriptors)

D1 - KNOWLEDGE AND UNDERSTANDING
At the end of this activity, students should be able to:
1) thoroughly know the structure-property relationships of the main families of organic compounds;
2) familiar with the principles that drive the organic reactions and allow the rational interpretation of reaction mechanism;
3) know the chemical-physical properties of polyfunctional organic molecules to become familiar with the compounds often used in laboratory;
4) learn about the centrality of organic chemistry at the interface with biochemistry and pharmaceutical chemistry;
5) know the main databases of chemical interest and the higher organic chemistry electronic journals.

D2 - APPLYING KNOWLEDGE AND UNDERSTANDING
At the end of this activity, students should be able to:
1) describe reaction mechanisms in multifunctional organic molecules;
2) classify organic transformations on the basis of the interactions between the different functional groups present in an organic molecule;
3) describe the design of organic transformations necessary to prepare simple organic compounds;
4) describe the most functional recognition reactions of the main functional groups;
5) describe the qualitative and quantitative aspects that allow to correctly predict the experimental results.

D3 - MAKING JUDGEMENTS
At the end of this activity, students should be able to:
1) acquire the basic principles of organic synthesis for the development of simple synthetic sequences of polyfunctional organic compounds;
2) ability to apply the acquired knowledge and understanding of reaction mechanisms to solve organic chemistry problems;
3) propose modern synthetic strategies with particular attention to the protection-deprotection of functional groups;
4) comparing the spettroscopic data to determine the structures of unknown organic compounds;

D4 - COMMUNICATION SKILLS
After completing the courser, students will have to prove that they are able to clearly describe the use of various concepts learning during lessons.

D5 - LEARNING SKILLS
At the end of the activity, students should be able to find and apply new information, than those provided in the training activity, to evaluate and compare.

Teaching Material

The teaching material prepared by the lecturer in addition to recommended textbooks (such as for instance slides, lecture notes, exercises, bibliography) and communications from the lecturer specific to the course can be found inside the Moodle platform › blended.uniurb.it

Teaching, Attendance, Course Books and Assessment

Teaching

Lectures assisted by videoprojections and/or blackboard drawings. Interactive training.

youTube. https://www.youtube.com/user/pierorganic1

Innovative teaching methods

The in-person teaching mode will be enriched with exercises and insights, both individual and group.

Some course topics will be covered following the practice of the "flipped lesson."

Attendance

The attendance is NOT mandatory but strongly recommended.

Recommended to have the physic and organic chemistry fundamentals knowledge.

Course books

Organic Chemistry- Clayden, Greeves, Warren, Wothers - Second Edition, Ed. OXFORD

In addtion but not mandatory:
Strategic Applications of Named Reactions in Organic Synthesis - Laszlo Kurti, Barbara Czako. Elsevier

Assessment

The final evaluation entail written with excercises to solve (up to 30) and oral examination (optional)

There are ongoing evaluations (generally three replacing the final written exam)

Disability and Specific Learning Disorders (SLD)

Students who have registered their disability certification or SLD certification with the Inclusion and Right to Study Office can request to use conceptual maps (for keywords) during exams.

To this end, it is necessary to send the maps, two weeks before the exam date, to the course instructor, who will verify their compliance with the university guidelines and may request modifications.

Additional Information for Non-Attending Students

Teaching

Lectures assisted by videoprojections and/or blackboard drawings. Interactive training.

youTube. https://www.youtube.com/user/pierorganic1

Attendance

The attendance is NOT mandatory but strongly reccomended.

Course books

Organic Chemistry- Clayden, Greeves, Warren, Wothers - Second Edition, Ed. OXFORD

Assessment

The verification of learning, which aims to ascertain the acquisition of the knowledge and skills expected, takes place only through the final exam which consists of a written test (or with assessments in itinere / mid term) and an oral test.

The final written exam consists in solving six exercises, Two of heterocicli with possible references to biological chemistry, two of chemical reactivity and possible reaction mechanisms, and two of synthesis and / or retrosynthesis of compounds of biological interest. The exercises will be written according to typologies similar to the exercises carried out in the classroom by the teacher. the evaluation of the written test is formulated by a mark out of thirty. The duration of the written test is 3 hours.

the oral test is reserved for students who have passed the written test with at least 15. It concerns questions of preparation and reactivity of some functional groups, retrosynthesis and synthesis of compounds in line with what was presented in class by the teacher.

Disability and Specific Learning Disorders (SLD)

Students who have registered their disability certification or SLD certification with the Inclusion and Right to Study Office can request to use conceptual maps (for keywords) during exams.

To this end, it is necessary to send the maps, two weeks before the exam date, to the course instructor, who will verify their compliance with the university guidelines and may request modifications.

Notes

It is strongly reccommended to attend the class.

« back Last update: 12/03/2024

Il tuo feedback è importante

Raccontaci la tua esperienza e aiutaci a migliorare questa pagina.

Posta elettronica certificata

amministrazione@uniurb.legalmail.it

Social

Università degli Studi di Urbino Carlo Bo
Via Aurelio Saffi, 2 – 61029 Urbino PU – IT
Partita IVA 00448830414 – Codice Fiscale 82002850418
2024 © Tutti i diritti sono riservati

Top