Università degli Studi di Urbino Carlo Bo / Portale Web di Ateneo


ORGANIC CHEMISTRY I
CHIMICA ORGANICA I

A.Y. Credits
2016/2017 10
Lecturer Email Office hours for students
Fabio Mantellini
Teaching in foreign languages
Course with optional materials in a foreign language English
This course is entirely taught in Italian. Study materials can be provided in the foreign language and the final exam can be taken in the foreign language.

Assigned to the Degree Course

Industrial Pharmacy (LM-13)
Curriculum: PERCORSO COMUNE
Date Time Classroom / Location

Learning Objectives

The aim of the course is to introduce the natural characteristics, the nomenclature, the chemical-physical properties and reactivities of the main classes of organic compounds. A particular attention is turned to the mechanism of the reactions.

Program

COVALENT BOND AND MOLECULAR GEOMETRY

Electronic structure of atoms. Model of binding of Lewis. Functional groups. Bond angles and molecular geometry. Polar and non-polar molecules. Covalent bond: molecular orbital theory and valence bond. Resonance. Molecular orbitals delocalized systems. Length and strength of the bonds in alkanes, alkenes and alkynes.

ALKANES AND CYCLOALKANES

Structure of alkanes. Constitutional isomerism in alkanes. IUPAC nomenclature of alkanes.  Cycloalkanes. Conformation of alkanes and cycloalkanes. Isomers cis, trans in cycloalkanes. Physical properties of alkanes and cycloalkanes. Reactions of alkanes. Sources and importance of alkanes.

STEREOCHEMISTRY AND CHIRALITY

Stereoisomery, chirality of molecules. Nomenclature of chiral centers. Not cyclic molecules with two or more chiral centers. Cyclic molecules with two or more chiral centers. Properties of the stereoisomers. Optical activity: chirality as is revealed in the laboratory. Meaning of chirality in the biological world. Examples of chiral drugs. Amino acids. Separation of enantiomers: resolution.

ACIDS AND BASES

Acids and bases: Arrhenius, Brønsted-Lowry and Lewis theories. Acid dissociation constants, pKa and strength of acids and bases. Equilibrium position in the acid-base reactions. How to calculate the equilibrium constant in acid-base reactions. Thermochemical and mechanisms of acid-base reaction. Molecular structure and acidity.

ALKENES

Structure of alkenes. Physical properties of alkenes. Alkenes of natural origin: terpenes. Electrophilic additions: hydrohalic acids, water, bromine and chlorine, formation of halohydrins. Regioselectivity in the reactions of electrophilic addition. Oxymercuration / reduction of alkenes. Hydroboration / oxidation. Reduction. Reactants or products containing chiral centers

ALKYNE

Structure and nomenclature of alkynes. Physical properties of alkynes. Acidity of 1-alkyne. Preparation of alkynes. Electrophilic additions to alkynes. Hydration of alkynes to give aldehydes and ketones. Reduction of alkynes. Organic synthesis involving alkynes.

ALKYL HALIDES

Structure, nomenclature and physical properties of alkyl halides. Preparation of alkyl halides by halogenation of alkanes and by the addition of hydrogen halides to alkenes.

Allylic halogenation. Nucleophilic substitution in alkyl halides. Mechanisms of aliphatic nucleophilic substitution. Experimental evidence and the mechanisms for SN1 and SN2; comparison of nucleophilic substitution reactions. beta-elimination: mechanisms and experimental evidence. Competition between substitution and elimination.

.ALCOHOLS

Structure, nomenclature and physical properties of alcohols. Acidity of alcohols. Reactions of alcohols with active metals. Conversion of alcohols into alkyl halides and sulfonates. Dehydration of alcohols catalyzed by acid. Pinacol rearrangement. Oxidation of alcohols. Thiols.

ETHERS, EPOXIDES AND SULPHIDES

Structure, nomenclature and physical properties of ethers. Preparation of ethers. Reactions of ethers. Silyl ethers as protecting groups. Epoxides: structure and nomenclature. Synthesis of epoxides. Reactions of epoxides. Ethylene oxide and epichlorohydrin: buiding block in organic synthesis. Crown ethers. Sulphides.

ORGANOMETALLIC COMPOUNDS

Magnesium and lithium organometallic compounds of. Reactive lithium dialchilcuprati (Gilman reagents). Carbenes.

ALDEHYDES AND KETONES

Structure, nomenclature and physical properties of aldehydes and ketones. Nucleophilic additions to the carbonyl of carbon, oxygen, sulfur and nitrogen nucleophiles. Wittig reaction. Keto-enol tautomerism. Oxidation, reduction. Reactions to the alpha carbon.

CARBOXYLIC ACIDS

Structure, nomenclature and physical properties of carboxylic acids. Acidity. Preparation of carboxylic acids. Reduction. Esterification. Conversion to acid chlorides. Decarboxylation.

ESTERS, AMIDES, ACYL ANHYDRIDES, ACYL CHLORIDES

Structure, nomenclature and physical properties of esters, amides, acyl anhydrides, and acid chlorides. Nucleophilic  acyl substitution. Reactions with water: hydrolysis. Reactions with alcohols. Reactions with ammonia and amines. Reactions of acid chlorides with the salts of carboxylic acids. Interconversion of carboxylic acid derivatives. Reactions with organometallic compounds.

ANIONS ENOLATE AND ENAMINES

Formation and reaction of enolate anions. Aldol condensation. Claisen and Dieckmann condensations. The aldol and Claisen condensations in the biological world. Enamines. Acetoacetic synthesis. Malonic ester synthesis. Addition conjugated to alpha, beta-unsaturated-carbonyl compounds. Cross reactions of enolates using LDA. Knoevenagel condensation.

SYSTEMS CONJUGATED

Stability of the conjugated diene. Electrophilic additions to conjugated dienes.

AROMATIC COMPOUNDS

Structure, nomenclature and physical properties of aromatic compounds. Phenols. Reactions in benzyl position. Electrophilic aromatic substitution. Poly-substitution reactions. Nucleophilic aromatic substitution. Heterocycles.

AMINES

Structure, nomenclature and physical properties of amines. Chiral amine and quaternary ammonium ions. Basicity of the amines. Reactions with acids. Preparation of amines. Reactions with nitrous acid. Hofmann elimination. Cope elimination.

NITROGEN ORGANIC COMPOUNDS

Imines, reaction of Eschweiler-Clark, Mannich reaction, isocyanates, nitriles, amides, oximes, Beckmann rearrangement, azo compounds, diazoalkanes, azides.

Bridging Courses

General and Inorganic Chemistry and Physical Chemistry.

Learning Achievements (Dublin Descriptors)

The student must show knowledge and understanding of organic reactions required to produce synthetic processes of complex molecules.

The student must show to apply their knowledge, understanding and ability to solve problems in topics related to the behavior of organic substances included in a general context;

The student will be able to communicate clearly with a chemical language adapted its conclusions, and the knowledge to specialist and non-specialist;

The student will have developed those learning skills that enable them to continue studying mostly in a self-directed or autonomous.

Teaching Material

The teaching material prepared by the lecturer in addition to recommended textbooks (such as for instance slides, lecture notes, exercises, bibliography) and communications from the lecturer specific to the course can be found inside the Moodle platform › blended.uniurb.it

Supporting Activities

Optional tutorials with tutor


Teaching, Attendance, Course Books and Assessment

Teaching

Lectures and exercises on the blackboard

Course books

W. H. Brown, C. S. Foote, B. L. Iverson, E. V. Anslyn, CHIMICA ORGANICA con modelli molecolari, Quarta Edizione, 2010, Edises. 
M. V. D'Auria, O. Tagliatela Scafati, A. Zampella GUIDA RAGIONATA ALLO SVOLGIMENTO DI ESERCIZI DI CHIMICA ORGANICA, 2009, Loghia. SECONDA EDIZIONE

Assessment

 written and oral tests

Disability and Specific Learning Disorders (SLD)

Students who have registered their disability certification or SLD certification with the Inclusion and Right to Study Office can request to use conceptual maps (for keywords) during exams.

To this end, it is necessary to send the maps, two weeks before the exam date, to the course instructor, who will verify their compliance with the university guidelines and may request modifications.

« back Last update: 08/11/2016

Il tuo feedback è importante

Raccontaci la tua esperienza e aiutaci a migliorare questa pagina.

Posta elettronica certificata

amministrazione@uniurb.legalmail.it

Social

Università degli Studi di Urbino Carlo Bo
Via Aurelio Saffi, 2 – 61029 Urbino PU – IT
Partita IVA 00448830414 – Codice Fiscale 82002850418
2024 © Tutti i diritti sono riservati

Top