PHSYSICS
FISICA
A.Y. | Credits |
---|---|
2024/2025 | 6 |
Lecturer | Office hours for students | |
---|---|---|
Francesco Piergiovanni |
Teaching in foreign languages |
---|
Course with optional materials in a foreign language
English
This course is entirely taught in Italian. Study materials can be provided in the foreign language and the final exam can be taken in the foreign language. |
Assigned to the Degree Course
Date | Time | Classroom / Location |
---|
Date | Time | Classroom / Location |
---|
Learning Objectives
To acquire the basic elements of Physics, and the knowledge of a scientific language that allows students to study in greater depth, also in autonomy, the topics acquired at an introductory level during the course.
Program
1. Units
1.1 International system of units
1.2 Length, angle, time and mass units
1.3 Dimensional analysis, change of units
2. Scalars and vectors
2.1 Geometric, analytic definitions
2.2 Addition, subtraction of vectors
2.3 Scalar product of vectors, modulus
3. Point mass kinematics
3.1 Displacement as a vector
3.2 Velocity and acceleration
3.3 Uniform and accelerated rectilinear motion
3.4 Uniform circular motion: angular velocity, centripetal acceleration
4 Point mass dynamics
4.1 Law of inertia
4.2 Newton's second law
4.3 Force and acceleration, the concept of mass
4.4 Action and reaction
4.5 Example of forces: gravitational force, elastic force
5 Work and kinetic energy
5.1 Mechanical work
5.2 Kinetic energy in translational and rotational motions
5.3 Kinetic energy theorem
6 Potential energy, energy conservation
6.1 Gravitational potential
6.2 Inclined plane
6.3 Conservative forces
6.4 Mechanical energy
7 Systems of point masses
7.1 Internal and external forces
7.2 Centre of mass
7.3 Linear momentum and its conservation
7.4 Collisions
7.5 Rotational kinetic energy, momentum of inertia
7.6 Angular momentum and its conservation
8 Fluid statics
8.1 Density and pressure
8.2 Water-based, mercury-based barometers
8.3 Atmospheric and blood pressure
8.4 Pascal's principle, Stevin's law
8.5 Archimedes' principle
9 Fluid dynamics
9.1 Ideal fluids
9.2 Flow lines, continuity equation
9.3 Bernoulli's equation, Venturi effect
9.4 Real fluids: viscosity, capillarity, surface tension
10 Heat and temperature
10.1 Temperature as a measure of thermal motion
10.2 Heat spontaneous flow and temperature
10.3 Thermometric scales: Celsius, Kelvin. The "absolute zero" concept.
11 Ideal gases
11.1 State variables
11.2 Equation of state of perfect gases: Boltzmann constant
11.3 Avogadro's number, universal gas constant
11.4 Elements of kinetic theory of gases: pressure, temperature and kinetic energy
12 Thermal energy and the first principle of thermodynamics
12.1 Generalizations of the principle of energy conservation
12.2 Energia interna dei corpi in termini dell'energia delle molecole
12.3 Thermodynamic transformations
12.4 First principle of thermodynamics: heat, work and thermal energy balance
12.6 Enthalpy
13 The second principle of thermodynamics: order and disorder
13.1 Reversible and irreversible transformations
13.2 Order and disorder: entropy
13.4 Il II principio negli enunciati di Kelvin e Clausius
13.5 Spontaneous transformations: the Gibbs free energy
14 Electrostatics
14.1 Electric charge
14.2 Coulomb's law
14.3 Electric field
14.4 Point charge field
14.5 Electric dipole
14.6 Gauss' law
15 Electrostatic potential
15.1 Electric potential energy
15.2 Electrostatic potential, potential difference
15.3 Potential in a central and in a uniform field
15.4 Battery as a source of potential difference
16 Electric current
16.1 Conduttori e isolanti
16.2 Electric current density in a conductor
16.3 Resistance and Ohm's law
16.4 Joule effect
16.5 Capacity
16.6 Elementary circuits
17 Magnetic field
17.1 Field of permanent magnets
17.2 Magnetic field due to a current running through a wire
17.3 Ampère's law
17.4 Solenoidal magnetic field
17.5 Dia-, para- e ferro-magnetism
17.6 Lorentz's force on a electrict charge
17.7 Motion of a charge in a magnetic field
17.8 Mass spectrometer
Bridging Courses
There are no bridging requirements, however the student would greatly benefit from having acquired the mathematical competences made available by the course "Medical statistics with elements of mathematics"
Learning Achievements (Dublin Descriptors)
Knowledge and understanding: the student will know the main laws of Physics, particularly in the fields of point mass mechanics, of the mechanics of the rigid body and of the fluids. The student will know the fundamental elements of thermodynamics, and will possess basic knowledge of electrostatic and magnetism, and of electrodynamics. The student will be introduced to the concept of modern Physics, for a first understanding of atomic structures and nuclear physics.
Applying knowledge and understanding: the student will be in position to apply the laws of Physics to real problems, and to solve them both in a qualitative and quantitative way.
Making judgements: the students will be able to assess the plausibility of a result, both on the basis of correct units, and by means of analogical reasoning and scientific sense.
Communication skills: the student will acquire a correct scientific language, which includes the appropriate use of the units..
Learning skills: the student will be able to expand his/her knowledge on specific topics, not discussed in the course, by means of non-specialistic scientific texts.
Teaching Material
The teaching material prepared by the lecturer in addition to recommended textbooks (such as for instance slides, lecture notes, exercises, bibliography) and communications from the lecturer specific to the course can be found inside the Moodle platform › blended.uniurb.it
Teaching, Attendance, Course Books and Assessment
- Teaching
Frontal lessons
- Course books
Choose one out of the two following textbooks:
- Burns D. & MacDonald G., Physics for biology and pre-medical students, Addison Wesley
- Halliday, Resnick, Walker, Fundamentals of Physics, 7th edition, Wiley
It is not required to study the whole textbook, but to select relevant chapters and sections on the basis of the detailed course syllabus.
- Assessment
Written test, which requires to solve simple exercises on the programme, followed by an oral exam.
The vote on the written test, in thirthiets, results from the number of correct exercises.
It is required to obtain at least 15/30 on the written test to be admitted to the oral exam.
The oral exam requires answering a few questions on the theory, and contributes to the overall vote (again, in thirthiets) indicatively with 5 points to be added or subtracted to the vote obtained in the written test.
- Disability and Specific Learning Disorders (SLD)
Students who have registered their disability certification or SLD certification with the Inclusion and Right to Study Office can request to use conceptual maps (for keywords) during exams.
To this end, it is necessary to send the maps, two weeks before the exam date, to the course instructor, who will verify their compliance with the university guidelines and may request modifications.
Additional Information for Non-Attending Students
- Teaching
The same
- Course books
The same
- Assessment
The same
- Disability and Specific Learning Disorders (SLD)
Students who have registered their disability certification or SLD certification with the Inclusion and Right to Study Office can request to use conceptual maps (for keywords) during exams.
To this end, it is necessary to send the maps, two weeks before the exam date, to the course instructor, who will verify their compliance with the university guidelines and may request modifications.
Notes
The following mathematical concepts will be used during the course and should be known to the students
Geometry: straight line, half-line, segments, angles, right-angled triangle, Pythagoras' theorem. Circle, circumference and area.
Cartesian reference system: coordinates to locate a point in two and three dimensions
Trigonometry: sine and cosine (sin,cos) functions, relationship between hypothenuse and catheti in a right-angled triangle.
Algebra: first and second degree equations with one unknown. Systems of first degree equations with two unknowns.
Calculus: functions, difference quotient, derivative.
« back | Last update: 03/07/2024 |