Università degli Studi di Urbino Carlo Bo / Portale Web di Ateneo


MEDICAL STATISTICS FOR CLINICAL DIAGNOSTICS AND CLINICAL DRUG TRIALS mutuato
STATISTICA MEDICA PER LA DIAGNOSTICA CLINICA E LA SPERIMENTAZIONE DI FARMACI

A.Y. Credits
2021/2022 6
Lecturer Email Office hours for students
Marco Bruno Luigi Rocchi
Teaching in foreign languages
Course with optional materials in a foreign language English
This course is entirely taught in Italian. Study materials can be provided in the foreign language and the final exam can be taken in the foreign language.

Assigned to the Degree Course

Biotecnologie mediche per la diagnostica e la terapia (LM-9)
Curriculum: BIOTECNOLOGIE PER LE TERAPIE INNOVATIVE
Date Time Classroom / Location
Date Time Classroom / Location

Learning Objectives

The course aims to give the student the statistical and methodological knowledge essential in the context of clinical diagnostics and the validation process of new therapies, including through the use of open-source software and spreadsheets.

Program

Part A - Statistics for diagnostics

The evaluation measures of a diagnostic test: Sensitivity, specificity, positive and negative predictive values, LR +, LR-.

The ROC curves: meaning and construction

The optimal threshold of a diagnostic test: Youden approach and economic approach

The validation of a diagnostic test: intraclass correlation coefficient and concordance measures

Part B - Statistics and methodology for the experimentation of therapeutic products

Phase I, II, III, and IV studies.

The experimental design in Phases I, II, III: designs for the choice of the optimal dosage; Fleming's design and two-stage Simon's design; design between patients and within patients (cross-over)

Observational designs for Phase IV studies

The sample size and the power of the design

The techniques of randomization and non-randomized allocation

Treatment effectiveness measures: Absolute Risk Reduction, Relative Risk, Relative Risk Reduction, Odds Ratio, Number to Treat

Introduction to pharmacokinetic modeling for Phase I studies

Learning Achievements (Dublin Descriptors)

In relation to statistics for biomedical sciences, students should show possession of: 

D1 - the mastery of basic skills; 

D2 - the understanding of the fundamental concepts of the discipline 

D3 - the ability to use knowledge and concepts to reason according to the logic of the discipline

D4 - the ability to communicate to specialist and non-specialist audiences

D5 - the ability to study in an autonomous manner

Teaching Material

The teaching material prepared by the lecturer in addition to recommended textbooks (such as for instance slides, lecture notes, exercises, bibliography) and communications from the lecturer specific to the course can be found inside the Moodle platform › blended.uniurb.it

Supporting Activities

Seminars; guided exercises 


Teaching, Attendance, Course Books and Assessment

Teaching

Frontal lessons

Attendance

None; attendance is strongly recommended

Course books

Rocchi MBL: Statistica e metodologia della ricerca per le discipline biomediche e psicocomportamentali, Edizioni Goliardiche, Trieste, 2007 

Other materials will be provided by the teacher

Assessment

Elaboration and oral presentation of a thesis on a topic to be agreed

Additional Information for Non-Attending Students

Teaching

Material available on blended.uniurb.it can be advantageously used

Attendance

None

Course books

As for attending students

Assessment

As for attending students

Notes

The student can request to sit the final exam in English with an alternative bibliography. (Course with optional materials in a foreign language)

« back Last update: 09/06/2022

Condividi


Questo contenuto ha risposto alla tua domanda?


Il tuo feedback è importante

Raccontaci la tua esperienza e aiutaci a migliorare questa pagina.

Se sei vittima di violenza o stalking chiama il 1522

Il 1522 è un servizio pubblico promosso dalla Presidenza del Consiglio dei Ministri – Dipartimento per le Pari Opportunità. Il numero, gratuito è attivo 24 h su 24, accoglie con operatrici specializzate le richieste di aiuto e sostegno delle vittime di violenza e stalking.

Posta elettronica certificata

amministrazione@uniurb.legalmail.it

Social

Università degli Studi di Urbino Carlo Bo
Via Aurelio Saffi, 2 – 61029 Urbino PU – IT
Partita IVA 00448830414 – Codice Fiscale 82002850418
2023 © Tutti i diritti sono riservati

Top