Università degli Studi di Urbino Carlo Bo / Portale Web di Ateneo


PROBABILITY AND STATISTICS
PROBABILITÀ E STATISTICA MATEMATICA

A.Y. Credits
2023/2024 6
Lecturer Email Office hours for students
Alessia Elisabetta Kogoj Wednesday and Thursday 13:00-14:00 and on demand
Teaching in foreign languages
Course with optional materials in a foreign language English
This course is entirely taught in Italian. Study materials can be provided in the foreign language and the final exam can be taken in the foreign language.

Assigned to the Degree Course

Applied Informatics (L-31)
Curriculum: PERCORSO COMUNE
Date Time Classroom / Location
Date Time Classroom / Location

Learning Objectives

The course is meant to provide the basics of the theory of probability, random variables and distribution functions as well as the main concepts of inferential statistics and hypothesis testing.

Program

01. Probablity calculus:
01.01 Probability space, events.
01.02 Conditional probability. Independence.
01.03 Law of total probability (and its proof).  
01.04 Bayes rule (and its proof).
01.05 Examples, problems and applications. 

02. Discrete random variables:

02.01 Probability Mass function. Independence. Expected value, variance and their properties.

02.02 Special discrete distributions: Bernoulli, binomial and Poisson distributions. 
02.03 Poisson distribution as an approximation for binomial: theorem and proof.
02.04 Geometrical distributions and negative binomial distributions.

03. Continuous random variables:
03.01 Probability density function and distribution function. Independence. Expected value, variance and their properties.
03.02 Special continuous distributions: Uniform distribution, Exponential distribution, Gaussian distributions, Chi-squared, the t-distribution, the F-distribution.

04.  Limit theorems:
04.01 Markov inequality (and its proof). 
04.02 Law of large numbers (and  its proof). 
04.03 Central limit theorem.

05. Statistical Inference:
05.01 Random samples.
05.02 Consistent and unbiased estimators. 
05.03 Sample mean and variance.
05.04 Normal samples. 
05.05 Maximum Likelihood Estimation.

06.  Hypotheses testing:
06.01 Hypotheses testing for mean and variance of a normal sample.  Hypotheses testing for mean and variance of normal  independent samples. 
06.02 Confidence intervals: confidence intervals for mean and variance of a normal sample.
06.03 Goodness of fit test.
06.04 Test of independence.  

Bridging Courses

Calculus (strongly suggested, not mandatory).

Learning Achievements (Dublin Descriptors)

Knowledge and understanding: the student will be acquainted with the basis of the mathematical theory of Probability and of the Inferential Statistics.

Applying knowledge and understanding: the student will be able to theoretically analyse problems where stochastic variability plays a fondamental role.

Making judgements: the student will be able to choose among several approaches the suitable solution to probabilistic problems.

Communication skills: the student will be able to communicate probabilistic informations by use of the techniques of the differential and integral calculus.

Learning skills: the student will learn the methodology to be used in the mathematical formulation of empirical phenomena.

Teaching Material

The teaching material prepared by the lecturer in addition to recommended textbooks (such as for instance slides, lecture notes, exercises, bibliography) and communications from the lecturer specific to the course can be found inside the Moodle platform › blended.uniurb.it

Supporting Activities

Handouts, excercises, and solutions of exams are available in the Moodle platform for blended learning.


Teaching, Attendance, Course Books and Assessment

Teaching

Theory lectures and exercises.

Innovative teaching methods

The classroom lectures will be integrated with exercise sessions both individually and in group.

Attendance

Course attendance is not mandatory.

Course books

A. Lanconelli, "Introduzione alla Teoria della Probabilità", Independently published.

S. Ross: ”Probabilità e statistica per l’ingegneria e le scienze”, APOGEO. 

Assessment

The expected learning outcomes  will be assessed through a written exam which includes exercises and open questions on the topics of the program of the course. The time available to answer the questions proposed is two hours.

The evaluation criteria are: the level of mastery of knowledge, the degree of articulation of the answer, the degree of adequacy of the explanation, the degree of use of mathematical tools, the degree of accuracy of the analysis and the use of any explanatory examples.

Each of the criteria is assessed on the basis of a four-level scale of values/judgments (insufficient, sufficient, good, excellent) with particular weight assigned to the level of mastery of knowledge, the degree of articulation of the response and the adequacy of the explanation.

The mark of the written exam is expressed on a scale from 18 (minimum to pass the exam) to 30 (excellence).

After passing the written exam (18/30), the student can, if he/she wishes, take a supplementary oral exam. The final evaluation will consist of the evaluation obtained on the written paper together with the evaluation obtained in the oral.

Disabilità e DSA

Le studentesse e gli studenti che hanno registrato la certificazione di disabilità o la certificazione di DSA presso l'Ufficio Inclusione e diritto allo studio, possono chiedere di utilizzare le mappe concettuali (per parole chiave) durante la prova di esame.

A tal fine, è necessario inviare le mappe, due settimane prima dell’appello di esame, alla o al docente del corso, che ne verificherà la coerenza con le indicazioni delle linee guida di ateneo e potrà chiederne la modifica.

Additional Information for Non-Attending Students

Teaching

As for attending students.

Attendance

As for attending students.

Course books

As for attending students.

Assessment

As for attending students.

Disabilità e DSA

Le studentesse e gli studenti che hanno registrato la certificazione di disabilità o la certificazione di DSA presso l'Ufficio Inclusione e diritto allo studio, possono chiedere di utilizzare le mappe concettuali (per parole chiave) durante la prova di esame.

A tal fine, è necessario inviare le mappe, due settimane prima dell’appello di esame, alla o al docente del corso, che ne verificherà la coerenza con le indicazioni delle linee guida di ateneo e potrà chiederne la modifica.

« back Last update: 28/07/2023

Il tuo feedback è importante

Raccontaci la tua esperienza e aiutaci a migliorare questa pagina.

Il tuo 5x1000 per sostenere le attività di ricerca

L'Università di Urbino destina tutte le risorse che deriveranno da questa iniziativa alla ricerca scientifica ed al sostegno di giovani ricercatori.

15 22

Se sei vittima di violenza o stalking chiama il 1522, scarica l'app o chatta su www.1522.eu

Il numero, gratuito è attivo 24 h su 24, accoglie con operatrici specializzate le richieste di aiuto e sostegno delle vittime di violenza e stalking.

Posta elettronica certificata

amministrazione@uniurb.legalmail.it

Social

Università degli Studi di Urbino Carlo Bo
Via Aurelio Saffi, 2 – 61029 Urbino PU – IT
Partita IVA 00448830414 – Codice Fiscale 82002850418
2024 © Tutti i diritti sono riservati

Top