SOCIAL MEDIA ANALYSIS
SOCIAL MEDIA ANALYSIS
A.A. | CFU |
---|---|
2016/2017 | 6 |
Docente | Ricevimento studentesse e studenti | |
---|---|---|
Fabio Giglietto | LUN 11-13 |
Didattica in lingue straniere |
---|
Insegnamento con materiali opzionali in lingua straniera
Inglese
La didattica è svolta interamente in lingua italiana. I materiali di studio e l'esame possono essere in lingua straniera. |
Assegnato al Corso di Studio
Giorno | Orario | Aula |
---|
Obiettivi Formativi
Nel corso degli ultimi anni, i media sociali come Facebook e Twitter si sono affermati fino a diventare una infrastruttura di comunicazione essenziale per la società e per l'individuo. Una parte crescente delle nostre conversazioni quotidiane passano attraverso la mediazione di queste piattaforme. Questa mediazione rende conversazioni un tempo effimere, permanenti, ricercabili scalabili e replicabili. A partire da una riflessione sull'impatto sociale di queste quattro proprietà, il corso concentra l'attenzione sulle conseguenze di questi cambiamenti per lo studio della società e della comunicazione. Durante il corso gli studenti acquisiranno conoscenze su come reperire, archiviare e analizzare le conversazioni che hanno luogo su Twitter e Facebook.
Nello specifico il corso di quest'anno sarà dedicato all'analisi delle conversazioni che nascono intorno ai contenuti informativi e disinformativi.
Programma
Lezione 1
- Presentazione del corso
- Dal Web 2.0 ai Social Media
Lezione 2
Misinformation, Disinformation e tipologie di disinformazione in rete
Lezione 3
Il ruolo dei media mainstream
Lezione 4
Introduzione alle API di Twitter e Facebook
Facebook Graph API ExplorerURL
Twitter API Console ToolsURL
The Open Laboratory: Limits and Possibilities of Using Facebook, Twitter, and YouTube as a Research Data SourceFile
Lezione 5
Limiti e opportunità: formati JSON e CSV, GNIP e DiscoverText
DiscoverTextURL
Lezione 6
Social Network Analysis di Gruppi e Facebook con Netvizz e Gephi
Lezione 7
Introduzione a R
Lezione 8
Introduzione a R
Lezione 9
Introduzione all’analisi del contenuto dei social media
Lezione 10
Formazione dei gruppi, scelta dei temi ed inizio dell’attività
Lezione 11
Workgroup
Lezione 12
Workgroup
Lezione 13
Workgroup
Lezione 13
Workgroup
Lezione 14
Workgroup
Lezione 15
Workgroup
Lezione 16
Preparazione della relazione finale
Lezione 17
Preparazione della relazione finale
Lezione 18
Preparazione della relazione finale
Consegna Relazione
Eventuali Propedeuticità
Nessuna propedeuticità, ma gli studenti che hanno già affrontato i corsi di Statistica Sociale e Sociologia dei new media e Internet Studies ed il Laboratorio di Social Media riusciranno a seguire con più agio le tematiche proposte da questo corso.
Risultati di Apprendimento (Descrittori di Dublino)
1. Conoscenze e capacità di comprensione: delle opportunità e le sfide che i social media pongono alla ricerca sociale, conoscere le API di Twitter e Facebook, conoscere piattaforme e tecniche per l'acquisizione dati da Twitter e Facebook, conoscere le tecniche di analisi del contenuto
1.1. Gli studenti conseguono tali conoscenze attraverso momenti di esercitazione hands-on individuali e di gruppo in classe.
Materiale Didattico
Il materiale didattico predisposto dalla/dal docente in aggiunta ai testi consigliati (come ad esempio diapositive, dispense, esercizi, bibliografia) e le comunicazioni della/del docente specifiche per l'insegnamento sono reperibili all'interno della piattaforma Moodle › blended.uniurb.it
Attività di Supporto
Sarà disponibile nella piattaforma di Blended Learning a http://blended.uniurb.it.
Modalità Didattiche, Obblighi, Testi di Studio e Modalità di Accertamento
- Modalità didattiche
3 appuntamenti settimanali di 2 ore ciascuno. Lezioni frontali, discussione in classe e project work
- Obblighi
Frequentare almeno 3/4 delle lezione e prendere parte all'attività di project work
- Testi di studio
Bennato, D. (2015). Il computer come macroscopio: Big data e approccio computazionale per comprendere i cambiamenti sociali e culturali. Milano: Franco Angeli.
Allport, G. W., & Postman, L. (1946). AN ANALYSIS OF RUMOR. Public Opinion Quarterly,10(4), 501–517. http://doi.org/10.1093/poq/10.4.501
Bakshy, E., Messing, S., & Adamic, L. A. (2015). Political science. Exposure to ideologically diverse news and opinion on Facebook. Science, 348(6239), 1130–1132. http://doi.org/10.1126/science.aaa1160
- Modalità di
accertamento La verifica dell’apprendimento avverrà tramite colloquio orale individuale basato sulla discussione dell'elaborato consegnato dai gruppi a fine corso, volto a valutare sia l'apprendimento dei contenuti da parte dello studente sia la sua capacità di rielaborazione e di argomentazione. Daranno luogo a valutazioni di eccellenza: il possesso da parte dello studente di buone capacità critiche e di approfondimento; il saper collegare tra loro le principali tematiche affrontate nel corso; l’uso di un linguaggio appropriato rispetto alla specificità della disciplina. Daranno luogo a valutazioni discrete: il possesso da parte dello studente di una conoscenza mnemonica dei contenuti; una relativa capacità critica e di collegamento tra i temi trattati: l’uso di un linguaggio appropriato.Daranno luogo a valutazioni sufficienti: il raggiungimento di un bagaglio di conoscenze minimale sui temi trattati da parte dello studente, pur in presenza di alcune lacune formative; l’uso di un linguaggio non appropriato. Daranno luogo a valutazioni negative: difficoltà di orientamento dello studente rispetto ai temi affrontati nei testi d'esame; lacune formative; l’uso di un linguaggio non appropriato”. Nello specifico la valutazione finale è così strutturata: Project work (60%), colloquio orale (30%) e partecipazione in classe (10%). L'elaborato di gruppo sarà soggetto a verifica con il sistema anti-plagio in uso all'ateneo. Casi di plagio determineranno una valutazione negativa.
Alla valutazione della partecipazione in classe concorrerà il numero di lezioni frequentate sul totale, la partecipazione in aula e nello spazio blended, il contributo all'attività di gruppo e l’originalità dei contributi proposti.
- Disabilità e DSA
Le studentesse e gli studenti che hanno registrato la certificazione di disabilità o la certificazione di DSA presso l'Ufficio Inclusione e diritto allo studio, possono chiedere di utilizzare le mappe concettuali (per parole chiave) durante la prova di esame.
A tal fine, è necessario inviare le mappe, due settimane prima dell’appello di esame, alla o al docente del corso, che ne verificherà la coerenza con le indicazioni delle linee guida di ateneo e potrà chiederne la modifica.
Informazioni aggiuntive per studentesse e studenti non Frequentanti
- Modalità didattiche
-
- Obblighi
-
- Testi di studio
Bennato, D. (2015). Il computer come macroscopio: Big data e approccio computazionale per comprendere i cambiamenti sociali e culturali. Milano: Franco Angeli.
Allport, G. W., & Postman, L. (1946). AN ANALYSIS OF RUMOR. Public Opinion Quarterly, 10(4), 501–517. http://doi.org/10.1093/poq/10.4.501
A. Bessi, M. Coletto, G.A. Davidescu, A. Scala, G. Caldarelli, and W. Quattrociocchi. Science vs conspiracy: collective narratives in the age of (mis)information. Plos ONE (2015).
Bakshy, E., Messing, S., & Adamic, L. A. (2015). Political science. Exposure to ideologically diverse news and opinion on Facebook. Science, 348(6239), 1130–1132. http://doi.org/10.1126/science.aaa1160
- Modalità di
accertamento Esame orale
- Disabilità e DSA
Le studentesse e gli studenti che hanno registrato la certificazione di disabilità o la certificazione di DSA presso l'Ufficio Inclusione e diritto allo studio, possono chiedere di utilizzare le mappe concettuali (per parole chiave) durante la prova di esame.
A tal fine, è necessario inviare le mappe, due settimane prima dell’appello di esame, alla o al docente del corso, che ne verificherà la coerenza con le indicazioni delle linee guida di ateneo e potrà chiederne la modifica.
« torna indietro | Ultimo aggiornamento: 28/09/2016 |