Università degli Studi di Urbino Carlo Bo / Portale Web di Ateneo


PROBABILITÀ E STATISTICA MATEMATICA
PROBABILITY AND STATISTICS

A.A. CFU
2018/2019 6
Docente Email Ricevimento studentesse e studenti
Alessia Elisabetta Kogoj mercoledì 11:00-13:00 e su appuntamento
Didattica in lingue straniere
Insegnamento con materiali opzionali in lingua straniera Inglese
La didattica è svolta interamente in lingua italiana. I materiali di studio e l'esame possono essere in lingua straniera.

Assegnato al Corso di Studio

Informatica Applicata (L-31)
Curriculum: PERCORSO COMUNE
Giorno Orario Aula
Giorno Orario Aula

Obiettivi Formativi

Scopo del Corso è di fornire le nozioni di base del calcolo delle probabilità, con particolare riferimento a teoria della probabilità, variabili aleatorie e funzioni di probabilità, nonché i principali concetti della statistica inferenziale, con particolare riferimento a teoria della stima e test di ipotesi.

Programma

01. Calcolo delle Probabilità: 
01.01 Spazio di probabilità, eventi.
01.02 Probabilità condizionata, indipendenza. 
01.03  Formula delle probabilità totali (con dimostrazione).  
01.04 Formula di Bayes (con dimostrazione).
01.05 Esempi, problemi e applicazioni.

02. Variabili aleatorie:
02.01 Indipendenza per variabili aleatorie.
02.02  Valore atteso, varianza e loro proprietà. 
 

03. Variabili aleatorie discrete:
03.01 Funzione di probabilità.
03.02 Modelli di variabili aleatorie discrete: variabili aleatorie di Bernoulli, variabili aleatorie Binomiali, variabili aleatorie di Poisson. 
03.03 Teorema sulla convergenza della variabile aleatoria Binomiale alla variabile aleatoria di Poisson (con dimostrazione).
03.04 Variabili aleatorie Geometriche e variabili aleatorie Binomiali Negative. Istante di k-esima testa. 

04. Variabili aleatorie continue:
04.01 Densità di probabilità.
04.02 Modelli di variabili aleatorie continue:  variabili aleatorie Gaussiane, variabili aleatorie Chi-Quadro, variabili aleatorie di Student, variabili aleatorie di Fisher. 

05. Teoremi Limite:
05.01 Disuguaglianza di Markov (con dimostrazione). 
05.02 Legge dei grandi numeri (con dimostrazione). 
05.03 Teorema del limite centrale.

06. Statistica Inferenziale:
06.01 Campioni aleatori.
06.02 Stimatori consistenti e non distorti.
06.03 Media e varianza campionarie.
06.04 Campioni gaussiani. 
06.05 Metodo della massima verosimiglianza.


 

Eventuali Propedeuticità

E' fortemente consigliato, ma non obbligatorio, aver sostenuto l' esame di Analisi Matematica.

Risultati di Apprendimento (Descrittori di Dublino)

Conoscenza e capacità di comprensione: lo studente conoscerà le basi della teoria matematica della probabilità e della statistica inferenziale.

Conoscenza e capacità di comprensione applicate: lo studente potrà analizzare teoricamente un problema in condizioni di variabilità stocastica.

Autonomia di giudizio: lo studente potrà scegliere la metodologia più adatta all'esplorazione di problemi probabilistici.

Abilità comunicative: lo studente imparerà a comunicare le informazioni probabilistiche mediante le tecniche del calcolo differenziale e integrale.

Capacità di apprendimento: lo studente apprenderà la metodologia di formulazione matematica dei fenomeni empirici.

Materiale Didattico

Il materiale didattico predisposto dalla/dal docente in aggiunta ai testi consigliati (come ad esempio diapositive, dispense, esercizi, bibliografia) e le comunicazioni della/del docente specifiche per l'insegnamento sono reperibili all'interno della piattaforma Moodle › blended.uniurb.it

Modalità Didattiche, Obblighi, Testi di Studio e Modalità di Accertamento

Modalità didattiche

Lezioni frontali.

Obblighi

La frequenza non è obbligatoria.

Testi di studio

P. Baldi, "Calcolo delle Probabilità e Statistica", McGraw-Hill.

W. Navidi, "Statistics", Mc Graw-Hill.

D. Posa e S. De Iaco: ”Fondamenti di statistica inferenziale”, CLEUP.

S. Ross: ”Probabilità e statistica per l’ingegneria e le scienze”, APOGEO. 

Modalità di
accertamento

L’esame di Probabilità e Statistica  Matematica consiste in un esame scritto e uno orale, entrambi obbligatori.

La prova scritta, della durata di due ore, consiste in esercizi a risposta aperta sugli argomenti del programma del corso. La prova scritta si considera superata se il voto riportato è maggiore o uguale a 15/30. Durante lo svolgimento delle prove scritte non è consentita la consultazione di libri di testo, né di appunti di alcun tipo, né di libri di esercizi. Non è consentito l’utilizzo di calcolatrici scientifiche, né di telefoni cellulari, pena l’esclusione.

La prova orale consiste in un colloquio sugli argomenti del programma del corso. Può sostenere la prova orale solo chi abbia superato la prova scritta con un voto minimo di 15/30. Il superamento della prova scritta dà diritto a sostenere l’esame orale solo nell’appello nel quale è stato superato l’esame scritto o negli appelli della medesima sessione.

Disabilità e DSA

Le studentesse e gli studenti che hanno registrato la certificazione di disabilità o la certificazione di DSA presso l'Ufficio Inclusione e diritto allo studio, possono chiedere di utilizzare le mappe concettuali (per parole chiave) durante la prova di esame.

A tal fine, è necessario inviare le mappe, due settimane prima dell’appello di esame, alla o al docente del corso, che ne verificherà la coerenza con le indicazioni delle linee guida di ateneo e potrà chiederne la modifica.

Informazioni aggiuntive per studentesse e studenti non Frequentanti

Modalità didattiche

Lezioni frontali.

Obblighi

La frequenza non è obbligatoria.

Testi di studio

P. Baldi, "Calcolo delle Probabilità e Statistica", McGraw-Hill.

W. Navidi, "Statistics", Mc Graw-Hill.

D. Posa e S. De Iaco: ”Fondamenti di statistica inferenziale”, CLEUP.

S. Ross: ”Probabilità e statistica per l’ingegneria e le scienze”, APOGEO. 

Modalità di
accertamento

Prova scritta e prova orale. 

Disabilità e DSA

Le studentesse e gli studenti che hanno registrato la certificazione di disabilità o la certificazione di DSA presso l'Ufficio Inclusione e diritto allo studio, possono chiedere di utilizzare le mappe concettuali (per parole chiave) durante la prova di esame.

A tal fine, è necessario inviare le mappe, due settimane prima dell’appello di esame, alla o al docente del corso, che ne verificherà la coerenza con le indicazioni delle linee guida di ateneo e potrà chiederne la modifica.

Note

L'insegnamento offre servizi di didattica integrativa on-line all'interno della piattaforma Moodle > elearning.uniurb.it

« torna indietro Ultimo aggiornamento: 06/01/2019


Il tuo feedback è importante

Raccontaci la tua esperienza e aiutaci a migliorare questa pagina.

Posta elettronica certificata

amministrazione@uniurb.legalmail.it

Social

Università degli Studi di Urbino Carlo Bo
Via Aurelio Saffi, 2 – 61029 Urbino PU – IT
Partita IVA 00448830414 – Codice Fiscale 82002850418
2024 © Tutti i diritti sono riservati

Top