Università degli Studi di Urbino Carlo Bo / Portale Web di Ateneo


MATEMATICA FINANZIARIA
FINANCIAL MATHEMATICS

A.A. CFU
2018/2019 6
Docente Email Ricevimento studentesse e studenti
Laura Gardini

Assegnato al Corso di Studio

Economia e Management (L-18)
Curriculum: ECONOMIA E MANAGEMENT
Giorno Orario Aula
Giorno Orario Aula

Obiettivi Formativi

Il corso mira a fornire gli elementi di base della matematica finanziaria classica e della valutazione dei titoli (elementi indispensabili in molti dei settori in cui si trova ad operare un laureato in Economia e Management), e si propone di insegnare ad effettuare i più comuni calcoli finanziari (valutazioni di flussi, piani di ammortamento, titoli obbligazionari, struttura dei tassi a pronti e a termine). A tal fine si introducono i concetti fondamentali della Matematica Finanziaria tradizionale, con esempi e applicazioni inerenti a pratiche comunemente utilizzate negli ambienti lavorativi e nei mercati finanziari.

Programma

1) Operazioni Finanziarie Elementari: Leggi e regimi in generale, Regime dell’Interesse Semplice, Regime dell’Interesse Anticipato, Regime ad Interesse Composto, Confronto fra i tre regimi finanziari, Regime ad interesse composto con convenzione lineare, Cambio del tasso, Tassi equivalenti, Forza d’interesse, Scindibilità, Montante di proseguimento, Tasso di inflazione, Tassi nominali, Relazione tra Tasso Istantaneo e Tasso Nominale, Tassi negativi.

2) Rendite Certe e Costituzione di Capitale: Valori di Rendite Costanti. Rendita unitaria annua/perpetua, posticipata/anticipata, immediata/differita, Rendite Frazionate. Costituzione di un capitale con rate costanti posticipate/anticipate, immediata/differita. Determinazione di r, n, i. Rendita in progressione aritmetica. Rendite a tassi variabili.

3) Ammortamento dei prestiti indivisi: Regole generali. Piani di ammortamento particolari. Ammortamento con quote di capitale costanti (ammortamento italiano). Ammortamento con annualità o rate costanti (ammortamento francese). Piano di ammortamento a due tassi (di tipo americano). Altri piani di rimborso. Il leasing. Funzione Fabbisogno. Valore di estinzione.

4) Valutazione di flussi finanziari: Valore, Nuda Proprietà ed Usufrutto. Formula di Makeham. Criteri di Valutazione di Investimenti. Criterio del tempo di recupero. Criterio del R.E.A. Criterio del saldo finale a due tassi. Tasso Interno, di Rendimento o di Costo. Confronto fra REA e TIR    . ROI e ROE (Leva finanziaria). TAN e TAEG. Applicazioni del TI e sue interpretazioni. Indici Temporali. Scadenza Media Aritmetica (Average Term to Maturity). Scadenza Media Finanziaria (o Scadenza Media). Durata Media Finanziaria o Duration. Duration Piatta (Flat Yield Curve Duration). Duration Modificata e Convexity. Stima della variazione del prezzo.

5) Prestiti divisi: Titoli obbligazionari ed Obbligazioni (generalità). Buoni ordinari del Tesoro (BOT). Titoli con cedole costanti (BTP). Prestiti Obbligazionari con estrazione a sorte. Ammortamento dei prestiti obbligazionari.

Eventuali Propedeuticità

Matematica Generale

Risultati di Apprendimento (Descrittori di Dublino)

Si prevede che vengano acquisite conoscenze e capacità di comprensione nel settore matematico orientato alla finanza classica, affinché si abbia l’autonomia di conoscenza adeguata all’inserimento in ambienti lavorativi del settore.
Oltre che una buona capacità di apprendimento, si prevede la capacità di applicare le conoscenze acquisite in maniera autonoma e competente.

Conoscenza e capacità di comprensione
Sugli argomenti trattati nel corso, del settore finanziario, lo studente deve acquisire le conoscenze di base per la comprensione delle principali variabili finanziarie ed il loro utilizzo nei modelli di calcolo. Esempi e modalità di lavoro vengono mostrati in aula durante le lezioni e le esercitazioni.

Conoscenza e capacità di comprensione
Al termine del corso lo studente dovrà aver acquisito una buona padronanza sugli argomenti di matematica finanziaria trattati nel corso. Dovrà essere in grado di svolgere correttamente i calcoli inerenti i flussi finanziari come da programma, e dovrà essere in grado di comprendere l’ulitizzo appropriato delle principali variabili finanziarie. Esempi e modalità di lavoro vengono mostrati in aula durante le lezioni e le esercitazioni.

Conoscenza e capacità di comprensione applicate
Al termine del corso lo studente dovrà aver acquisito una buona capacità di usare le variabili finanziarie studiate in situazioni simili a quelle presentate nel corso. Dovrà essere in grado applicare correttamente la formulazione studiata e dovrà essere capace di risolvere problemi di matematica finanziaria simili a quelli studiati. In particolare dovrà essere in grado di applicare le conoscenze acquisite anche in contesti leggermente diversi da quelli studiati, ed avere la capacità di utilizzare le conoscenze acquisite per risolvere autonomamente problemi che possono apparire nuovi. Esempi di tali applicazioni vengono mostrati in aula durante le lezioni e le esercitazioni. 

Autonomia di giudizio
Al termine del corso lo studente dovrà aver acquisito una buona capacità di analisi di argomenti e problemi di matematica finanziaria, la capacità di una valutazione critica di eventuali soluzioni proposte, e di una corretta interpretazione di argomenti simili.  

Abilità comunicative
Al termine del corso lo studente dovrà aver acquisito una buona capacità di comunicare in modo chiaro le proprie affermazioni e considerazioni inerenti problematiche di matematica finanziaria. La modalità di lavoro viene mostrata in aula durante le lezioni e durante le esercitazioni. 

Capacità di apprendere
Al termine del corso lo studente dovrà aver acquisito una buona capacità di autonomia nello studio della disciplina, nella lettura ed interpretazione di dati finanziari, nella ricerca di informazioni utili per approfondire la conoscenza degli argomenti trattati.   

Materiale Didattico

Il materiale didattico predisposto dalla/dal docente in aggiunta ai testi consigliati (come ad esempio diapositive, dispense, esercizi, bibliografia) e le comunicazioni della/del docente specifiche per l'insegnamento sono reperibili all'interno della piattaforma Moodle › blended.uniurb.it

Modalità Didattiche, Obblighi, Testi di Studio e Modalità di Accertamento

Modalità didattiche

Lezioni frontali

Testi di studio

R.L. D’Ecclesia e L. Gardini, Lezioni di matematica finanziaria. Parte I. Giappichelli, Ultima Edizione.

Testi alternativi: F. Cacciafesta, Matematica Finanziaria Classica e Moderna, Giappichelli, Ultima Edizione.

Testo per gli esercizi: F. Tramontana, Esercizi svolti di Matematica Finanziaria. Giappichelli, Ultima Edizione.

Lettura consigliata: Erio Castagnoli e Lorenzo Peccati, Matematica in azienda 1, Egea, Ultima edizione.

Modalità di
accertamento

L’esame consiste in due prove scritte. Una prova pratica costituita da 3 esercizi da svolgersi in un’ora. Durante la prova scritta è consentita la consultazione del libro di testo o di un manuale equivalente (ma non eserciziario). Si è ammessi alla prova di teoria se si supera la prova pratica con punteggio non inferiore a 16/30. La valutazione dell’esecuzione di ogni esercizio (generalmente 10 punti per ogni esercizio) verte principalmente sulla correttezza del procedimento con cui è stato svolto.

L’ammissione alla parte di teoria, una volta ottenuta, resta valida per un anno (dalla data di superamento della prova pratica), e la parte di teoria può essere sostenuta il giorno stesso oppure in qualunque appello entro un anno.

La prova di teoria consiste nel rispondere a 5 domande aperte, orientativamente una domanda su ciascuno dei 5 punti elencati nel programma del corso. Il punteggio dello scritto non fa media, è solo un’ammissione alla seconda parte, che determina il voto, ottenuto valutando da 0 a 6 punti la risposta a ciascuna delle 5 domande. La valutazione della risposta si basa sui diversi livelli di conoscenza dell’argomento chiesto: la conoscenza del significato e la modalità di calcolo dell’argomento chiesto, la conoscenza degli argomenti teorici e le dimostrazioni che portano al risultato.

Disabilità e DSA

Le studentesse e gli studenti che hanno registrato la certificazione di disabilità o la certificazione di DSA presso l'Ufficio Inclusione e diritto allo studio, possono chiedere di utilizzare le mappe concettuali (per parole chiave) durante la prova di esame.

A tal fine, è necessario inviare le mappe, due settimane prima dell’appello di esame, alla o al docente del corso, che ne verificherà la coerenza con le indicazioni delle linee guida di ateneo e potrà chiederne la modifica.

Informazioni aggiuntive per studentesse e studenti non Frequentanti

Testi di studio

Studio individuale dei testi indicati sopra e del materiale presente sulla piattaforma blended.

Modalità di
accertamento

La valutazione avviene secondo le stesse modalità indicate per gli studenti frequentanti.

Disabilità e DSA

Le studentesse e gli studenti che hanno registrato la certificazione di disabilità o la certificazione di DSA presso l'Ufficio Inclusione e diritto allo studio, possono chiedere di utilizzare le mappe concettuali (per parole chiave) durante la prova di esame.

A tal fine, è necessario inviare le mappe, due settimane prima dell’appello di esame, alla o al docente del corso, che ne verificherà la coerenza con le indicazioni delle linee guida di ateneo e potrà chiederne la modifica.

Note

L’esame e la bibliografia potranno essere in lingua inglese su richiesta dello studente.

« torna indietro Ultimo aggiornamento: 06/07/2018


Il tuo feedback è importante

Raccontaci la tua esperienza e aiutaci a migliorare questa pagina.

Posta elettronica certificata

amministrazione@uniurb.legalmail.it

Social

Università degli Studi di Urbino Carlo Bo
Via Aurelio Saffi, 2 – 61029 Urbino PU – IT
Partita IVA 00448830414 – Codice Fiscale 82002850418
2024 © Tutti i diritti sono riservati

Top