Università degli Studi di Urbino Carlo Bo / Portale Web di Ateneo


OPTIMIZATION METHODS
OPTIMIZATION METHODS

A.A. CFU
2021/2022 4
Docente Email Ricevimento studentesse e studenti
Raffaella Servadei lunedì e martedì ore 11-12 oppure su appuntamento
Didattica in lingue straniere
Insegnamento interamente in lingua straniera Inglese
La didattica è svolta interamente in lingua straniera e l'esame può essere sostenuto in lingua straniera.

Assegnato al Corso di Studio

Research Methods in Science and Technology (XXXVII)
Curriculum: PERCORSO COMUNE
Giorno Orario Aula
Giorno Orario Aula

Obiettivi Formativi

Lo scopo del corso è quello di fornire i concetti basilari dell'ottimizzazione matematica.

Programma

01. Introduzione all’ottimizzazione.

02. Ottimizzazione:

02.01  Massimi e minimi locali e globali di funzioni.

02.02  Punti critici di funzioni.

02.03  Metodo del gradiente.

02.04  Condizioni necessarie e sufficienti per massimi e minimi locali.

02.05  Classificazione dei punti critici.

03. Tecniche di minimizzazione:

03.01  Teorema di Weierstrass

03.02  Metodi diretti del Calcolo delle variazioni.

03.03  Teoria dei punti critici.

03.04  Metodi di minimax.

04. Applicazioni dell’ottimizzazione.

Eventuali Propedeuticità

Non vi sono propedeuticità obbligatorie.

Risultati di Apprendimento (Descrittori di Dublino)

Conoscenza e comprensione (knowledge and understanding): al termine del corso lo studente avrà acquisito le conoscenza fondamentali dei metodi di ottimizzazione matematica.

Capacità di applicare conoscenze e comprensione (applying knowledge and understanding): al termine del corso lo studente avrà acquisito le metodologie proprie dell’ottimizzazione matematica e sarà in grado di applicarle allo studio di problemi di vario genere.

Autonomia di giudizio (making judgements): al termine del corso lo studente sarà in grado di applicare i metodi di ottimizzazione matematica al fine di risolvere nuovi problemi, anche di natura applicativa.

Abilità comunicative (communications skills): al termine del corso lo studente avrà acquisito la capacità di esprimere i concetti fondamentali dell’ottimizzazione matematica con un certo rigore.

Capacità di apprendimento (learning skills): durante il corso lo studente acquisirà la capacità di studiare e apprendere le nozioni di ottimizzazione matematica, anche al fine di utilizzarle per la risoluzione di problemi di natura applicativa.

Materiale Didattico

Il materiale didattico predisposto dalla/dal docente in aggiunta ai testi consigliati (come ad esempio diapositive, dispense, esercizi, bibliografia) e le comunicazioni della/del docente specifiche per l'insegnamento sono reperibili all'interno della piattaforma Moodle › blended.uniurb.it

Modalità Didattiche, Obblighi, Testi di Studio e Modalità di Accertamento

Modalità didattiche

Lezioni teoriche ed esercitazioni.

Obblighi

Sebbene fortemente consigliata, la frequenza del corso non è obbligatoria.

Testi di studio

Adams R.A. – Essex C., Calculus: a complete course, Pearson Education Canada, 2013.

Badiale M. - Serra E., Semilinear Elliptic Equations for Beginners, Springer-Verlag, London, 2011.

Rabinowitz P.H., Minimax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Ser. Math., 65, American Mathematical Society,  Providence, RI (1986).

Struwe M., Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Ergebnisse der Mathematik und ihrer Grenzgebiete, \textbf{3}, Springer Verlag, Berlin-Heidelberg, 1990.

 Willem M., Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhauser, Boston, 1996.

Modalità di
accertamento

L’esame di Optimization Methods consiste in un esame scritto sugli argomenti del programma del corso.

Disabilità e DSA

Le studentesse e gli studenti che hanno registrato la certificazione di disabilità o la certificazione di DSA presso l'Ufficio Inclusione e diritto allo studio, possono chiedere di utilizzare le mappe concettuali (per parole chiave) durante la prova di esame.

A tal fine, è necessario inviare le mappe, due settimane prima dell’appello di esame, alla o al docente del corso, che ne verificherà la coerenza con le indicazioni delle linee guida di ateneo e potrà chiederne la modifica.

Informazioni aggiuntive per studentesse e studenti non Frequentanti

Modalità didattiche

Lezioni teoriche ed esercitazioni.

Obblighi

Sebbene fortemente consigliata, la frequenza del corso non è obbligatoria.

Testi di studio

Adams R.A. – Essex C., Calculus: a complete course, Pearson Education Canada, 2013.

Badiale M. - Serra E., Semilinear Elliptic Equations for Beginners, Springer-Verlag, London, 2011.

Rabinowitz P.H., Minimax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Ser. Math., 65, American Mathematical Society,  Providence, RI (1986).

Struwe M., Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Ergebnisse der Mathematik und ihrer Grenzgebiete, \textbf{3}, Springer Verlag, Berlin-Heidelberg, 1990.

 Willem M., Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhauser, Boston, 1996.

Modalità di
accertamento

L’esame di Optimization Methods consiste in un esame scritto sugli argomenti del programma del corso.

Disabilità e DSA

Le studentesse e gli studenti che hanno registrato la certificazione di disabilità o la certificazione di DSA presso l'Ufficio Inclusione e diritto allo studio, possono chiedere di utilizzare le mappe concettuali (per parole chiave) durante la prova di esame.

A tal fine, è necessario inviare le mappe, due settimane prima dell’appello di esame, alla o al docente del corso, che ne verificherà la coerenza con le indicazioni delle linee guida di ateneo e potrà chiederne la modifica.

« torna indietro Ultimo aggiornamento: 30/12/2021


Il tuo feedback è importante

Raccontaci la tua esperienza e aiutaci a migliorare questa pagina.

Posta elettronica certificata

amministrazione@uniurb.legalmail.it

Social

Università degli Studi di Urbino Carlo Bo
Via Aurelio Saffi, 2 – 61029 Urbino PU – IT
Partita IVA 00448830414 – Codice Fiscale 82002850418
2024 © Tutti i diritti sono riservati

Top