MATEMATICA GENERALE
A.A. | CFU |
---|---|
2007/2008 | 11 |
Docente | Ricevimento studentesse e studenti | |
---|---|---|
Gian Italo Bischi | sarà comunicato a inizio delle lezioni |
Assegnato al Corso di Studio
Giorno | Orario | Aula |
---|
Obiettivi Formativi
Il corso si propone di introdurre gradualmente gli studenti al formalismo, la terminologia e gli strumenti logici della matematica, prerequisiti indispensabili per una corretta assimilazione di molte delle discipline a contenuto economico, statistico e finanziario che lo studente dovrà affrontare nel seguito. Oltre ad abituare gli studenti all’uso pratico degli strumenti dell’algebra e del calcolo differenziale, il corso si propone di educarli a un approccio rigoroso e logicamente coerente ai problemi, attraverso il metodo logico-deduttivo tipico della matematica. La trattazione formale degli argomenti sarà preceduta da un approccio euristico e intuitivo, e per molti di essi verranno indicate le possibili applicazioni per la descrizione di sistemi e processi di tipo economico, sociale e finanziario. Le lezioni di natura più teorica saranno affiancate da esercitazioni svolte in aula e da indicazioni per guidare gli studenti nello svolgimento autonomo di esercizi.
Programma
Parte 1. Elementi introduttivi.
Elementi di logica: proposizioni, connettivi logici, quantificatori.
Elementi di teoria degli insiemi: operazioni fra insiemi, relazioni e funzioni.
Insiemi numerici elementari: numeri naturali, razionali. Insiemi finiti e calcolo combinatorio: disposizioni semplici e con ripetizione, permutazioni, combinazioni.Insiemi numerabili e principio di induzione.
I numeri reali.
Funzioni reali di variabile reale. Alcuni grafici elementari: polinomiali, razionali fratte, esponenziali, logaritmiche, circolari.
Richiami di geometria analitica del piano: equazioni di retta, parabola, iperbole, ellisse, circonferenza.
Parte 2. Elementi di Analisi Matematica per funzioni a una variabile.
Limiti di funzioni reali di variabile reale. Continuità e teoremi globali per funzioni continue: teorema di Weierstrass, teorema di esistenza degli zeri, teorema dei valori intermedi.
Nozione di derivata e suo significato geometrico. Regole di derivazione. Teoremi del calcolo differenziale: teorema di Rolle, Lagrange, Cauchy, De L’Hospital. Polinomio di Taylor.
Studio qualitativo del grafico di funzioni: asintoti, concavità, flessi, massimi e minimi locali e globali.
Integrale e sue principali proprietà. Funzione integrale e teorema fondamentale del calcolo. Primitive elementari.
Successioni numeriche e serie numeriche. Serie geometrica. Alcuni criteri di convergenza.
Successioni definite per ricorrenza come sistemi dinamici.
Parte 3. Elementi di algebra lineare.
Struttura dello spazio euclideo n-dimensionale. Operazioni fra vettori, lineare indipendenza. Matrici e operazioni fra matrici. Determinante e sue proprietà. Rango di una matrice. Matrice inversa.
Sistemi di equazioni lineari: Teorema di Cramer, Teorema di Rouché-Capelli, sistemi omogenei.
Matrici simmetriche, forme quadratiche, segno delle forme quadratiche.
Parte 4. Elementi di Analisi Matematica per funzioni a più variabili.
Funzioni di due o più variabili. Curve di livello, derivate parziali, gradiente e matrice Hessiana. Massimi e minimi liberi, classificazione dei punti critici. Proprietà globali delle funzioni concave e convesse. Funzioni omogenee.
Cenni su massimi e minimi vincolati coi moltiplicatori di Lagrange.
Modalità Didattiche, Obblighi, Testi di Studio e Modalità di Accertamento
- Modalità didattiche
Lezione frontale. Durante la prima parte del corso sono previste lezioni aggiuntive di esercitazioni su argomenti di base, come la risoluzione di equazioni e disequazioni algebriche, esponenziali, logaritmiche.
- Testi di studio
A. Guerraggio, “Matematica”, Bruno Mondadori Editore, Milano. In alternativa: G. C. Barozzi e C. Corradi “Matematica Generale per le Scienze Economiche”, il Mulino, Bologna. Oppure L. Peccati, S. Salsa e A. Squellati: “Matematica per l’Economia e l’Azienda”, EGEA, Milano. Come ausilio per le esercitazioni: M. Castellani e F. Gozzi “Matematica di base per l’Economia e l’Azienda: esercizi e testi d’esame svolti” Esculapio, Bologna M. L. Guerra e L. Sorini, “Matematica Generale. Esercizi Svolti”, Edizione Quattroventi Urbino.
Libri di testo, articoli o testi di approfondimento in lingua inglese possono essere indicati dal docente durante il corso
- Modalità di
accertamento L’esame consiste in una prova scritta e una orale: la prima è orientata allo svolgimento di esercizi, la seconda richiede di rispondere a quesiti di carattere teorico, come definizioni, enunciati di teoremi, dimostrazioni. Il superamento della prova scritta, con voto non inferiore a 15/30, è necessario per essere ammessi alla prova orale. Sono previsti due scritti parziali, nei mesi di gennaio e maggio, che propongono esercizi sulle parti 1-2 e 3-4 del programma rispettivamente. Il superamento di entrambi gli scritti parziali esonera dallo svolgimento della prova scritta, o parte di essa nel caso solo uno di essi venga superato.
Gli studenti stranieri possono sostenere l'esame in lingua inglese se lo desiderano.
- Disabilità e DSA
Le studentesse e gli studenti che hanno registrato la certificazione di disabilità o la certificazione di DSA presso l'Ufficio Inclusione e diritto allo studio, possono chiedere di utilizzare le mappe concettuali (per parole chiave) durante la prova di esame.
A tal fine, è necessario inviare le mappe, due settimane prima dell’appello di esame, alla o al docente del corso, che ne verificherà la coerenza con le indicazioni delle linee guida di ateneo e potrà chiederne la modifica.
Informazioni aggiuntive per studentesse e studenti non Frequentanti
- Testi di studio
Gli studenti non frequentanti possono contattare il docente per consigli sui libri di testo.
- Modalità di
accertamento Per gli studenti non frequentanti valgono le stesse modalità di accertamento.
- Disabilità e DSA
Le studentesse e gli studenti che hanno registrato la certificazione di disabilità o la certificazione di DSA presso l'Ufficio Inclusione e diritto allo studio, possono chiedere di utilizzare le mappe concettuali (per parole chiave) durante la prova di esame.
A tal fine, è necessario inviare le mappe, due settimane prima dell’appello di esame, alla o al docente del corso, che ne verificherà la coerenza con le indicazioni delle linee guida di ateneo e potrà chiederne la modifica.
« torna indietro | Ultimo aggiornamento: 22/07/2007 |